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Introduction
• Reachable set computation is one of the many important tools available for the verification 

of dynamical and hybrid systems. 


• One of the simpler and easier-to-understand reachable set computation algorithms for 
polynomial discrete dynamical systems utilizes Bernstein polynomials and parallelotope 
bundles.


• Tomasso Dreossi, Thao Dang and Carla Piazza implemented a tool called Sapo in C++ 
which leverages parallelotope bundles and the properties of Bernstein polynomials. 


• Kaa is a reimplementation of Sapo using robust Python libraries. The result is a compact 
implementation with only around ~650 lines of code. 




Preliminaries

•  The state of a system, denoted as , lies in a domain . A discrete-time 
polynomial nonlinear system is denoted as 

• The trajectory is denoted as , is the sequence  where . 


• Given an initial set , the reachable set at time , denoted as 
 where .

x D ⊆ ℝn

x+ = f(x)

ξ(x0) x0, x1, … xi+1 = f(xi)

Θ k
Θk = { ξ(x0, k) | x0 ∈ Θ} ξ(x0, k) = xk



Parallelotope Bundles

• A parallelotope  is a set of states in  denoted as  where  and 
,  and  such that: 


•  is called the direction matrix where  denotes the row of . The vector  is 
called the offset vector where  is the  element of the vector.


• A parallelotope bundle  is a set of parallelotopes  where . 
Note that any polytope initial set can be expressed as a parallelotope bundle. 

P ℝn ⟨Λ, c⟩ Λ ∈ ℝ2n×n

c ∈ ℝ2n Λi+n = − Λi i ∈ {1,…, n}

Λ Λi ith Λ c
ci ith

Q {P1, …, Pm} Q = ∩m
i=1 Pi

x ∈ P if and only if Λx ≤ c .



Parallelotope Bundles

Figure 1 from Dreossi et. al: 
Parallelotope Bundles for 

Polynomial Reachability (2016)




Bernstein Polynomials

• Given two multi-indices  and  of size , where , the Bernstein polynomial of 
degree  and index  is


• Any polynomial function can be expressed in the Bernstein basis. 

i d n i ≤ d
d i

ℬi,d = βi1,d1
(x1)βi2,d2

(x2)…βin,dn
(xn)

βim,dm
(xm) = (dm

im ) ximm (1 − xm)dm−im



Bernstein Polynomials

• The corresponding Bernstein Coefficients can be explicitly calculated for multi-
index  and polynomial degree :


•  The upper and lower bounds of polynomial  over unit box  are 
bounded by the Bernstein coefficients:

i d

h(x1, …, xn) [0,1]n

mini∈I{bi} ≤ infx∈[0,1]nh(x) ≤ supx∈[0,1]nh(x) ≤ maxi∈I{bi} .

bi,d = ∑
j≤i

∏
r

( ir
jr)

(dr

jr )
aj



Reachable Set Comp.

• A parallelotope  can also be represented as an affine transformation  from 
to .  

• Therefore, upper bounds on the supremum of a function  over  is equivalent to 
upper bound of  over . 


• We denote the procedures for calculating such upper and lower bounds for a 
polynomial  over some parallelotope  as  and 

 respectively.

P Tp [0,1]n

P

h P
h ∘ Tp [0,1]n

h P 𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(h, P)
𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(h, P)



Reachable Set Comp.
• Given parallelotope bundle  and a discrete dynamical system , 

we wish to compute an over-approximation of the image  as a new bundle 
.


• We ensure that direction matrix   of  is same as  and the computation is required only 
to compute the offsets of the directions according to the following non-linear optimization 
problems:


• Here,  is the  offset of parallelotope . Similarly,  is the  row of the directions 
matrix for . 

Q = {P1, P2, …, Pm} x+ = f(x)
f(Q)

Q′￼ = {P′￼1, P′￼2, …, P′￼m}

Λ_,i P′￼i Pi

cj,i jth Pi Λj,i jth

Pi

cj,i = max
x∈Pi

Λj,i ⋅ f(x)

cj+n,i = max
x∈Pi

− Λj,i ⋅ f(x)



Reachable Set Comp.

• We can invoke  and  to update the 
offsets according to the solutions found over all parallelotopes in the bundle 

:


• We iterate this over a certain number of time steps to produce the reachable set.

𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(h, P) 𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(h, P)

Q = {P1, P2, …, Pm}

cj,i = minm
l=1{𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(Λj,i ⋅ f(x), Pl)} if j ≤ n .

cj+n,i = maxm
l=1{𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(Λj,i ⋅ f(x), Pl)} otherwise. 



Sapo Drawbacks
• First published in: Dreossi, T. : Sapo: Reachability computation and parameter synthesis of 

polynomial dynamical systems (2017).


• Current implementation is verbose. The main core of algorithm takes over a thousand lines of C++ 
code. 


• It does not have native plotting functionality. Sapo generates MATLAB code which must be 
separately run through either MATLAB or Octave. Simultaneous visualization is clunky at best. 


• Suffers from little to no documentation. The curious reader must delve into previously published 
papers to find an explanation of the inner workings. 


• Consequently, it becomes difficult to accommodate experimentation. 



 Motivations for Kaa

• Python is known for its powerful, well-tested symbolic and matrix-computation libraries.

• Numpy libraries are popular matrix-computation libraries which allow higher-level 
manipulation of matrices. This gives us an avenue of overcoming the verbosity and the 
possibility of memory leaks inherent in implementing identical features in C++. 


•  The library of Sympy has powerful symbolic manipulation tools which allow us to 
comfortably perform many sensitive symbolic subsititutions into polynomials.


•  Matplotlib library has intuitive plotting facilities that we integrate into our tool for visualizing 
the reachable set. In particular, Matplotlib facilitates the ability to visualize several reachable 
sets simultaneously. 



Accessibility

• We offer a Juypter Notebook to rapidly introduce the interested reader to the techniques and 
tools we offer through Kaa.


• Juypter notebooks are simple to create and well-known for their straightforward user 
interface. 


• By leveraging the Matplotlib library for visualizing the reachable set, we were able to design 
an engaging interactive tutorial and experimentation platform for visualizing reachable sets of 
non-linear systems.


• We document the code extensively and offer resources for learning the internals of Kaa.



Results:  SIR Model
• The SIR epidemic model is a 3-dimensional dynamical system governed by the following 

dynamics: 

Upper and 
lower offsets 
for variable I

β = 0.34, γ = 0.05

Δ = 0.5



Results:  SIR Model
Kaa Sapo



Results:  SIR Model
Kaa Sapo



Results:  Rossler Model
• The Rossler model is another 3-dimensional system governed under the dynamics: 
•

Upper and 
lower offsets 
for variable y

a = 0.1, b = 0.1, c = 14
Δ = 0.025



Results:  Rossler Model
Kaa Sapo



Results:  Rossler Model
Kaa Sapo



Results:  Quadcopter Model
Kaa Sapo



Performance Drawbacks

•  While the current implementation in Python is very intuitive and concise, it incurs severe performance 
penalties. We believe this is due to some extraneous library calls in the core loop of the reachable set 
computation.    


•  An immediate next step is to deploy extensive profiling to find performance bottlenecks and subsequently             
improve on them. 



Conclusions
• We present Kaa, a Python implementation of reachable set computation of nonlinear systems 

which is focused towards accessibility and pedagogical use. 


• We include Juypter Notebooks and documentation through: https://github.com/Tarheel-
Formal-Methods/kaa

• While we do incur performance drawbacks from selecting Python for implementing this 
algorithm, we believe that it aids in fast prototyping and enables students to easily build on 
top of the library.


• Immediate future work includes improving on the running time and creating a more 
streamlined format for defining models and visualizing reachable sets. 

https://github.com/Tarheel-Formal-Methods/kaa
https://github.com/Tarheel-Formal-Methods/kaa
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