
Kaa: A Python Implementation of Reachable
Set Computation Using Bernstein Polynomials

Edward Kim and Parasara Sridhar Duggirala

Department of Computer Science

UNC- Chapel Hill

Introduction
• Reachable set computation is one of the many important tools available for the verification

of dynamical and hybrid systems.

• One of the simpler and easier-to-understand reachable set computation algorithms for
polynomial discrete dynamical systems utilizes Bernstein polynomials and parallelotope
bundles.

• Tomasso Dreossi, Thao Dang and Carla Piazza implemented a tool called Sapo in C++
which leverages parallelotope bundles and the properties of Bernstein polynomials.

• Kaa is a reimplementation of Sapo using robust Python libraries. The result is a compact
implementation with only around ~650 lines of code.

Preliminaries

• The state of a system, denoted as , lies in a domain . A discrete-time
polynomial nonlinear system is denoted as

• The trajectory is denoted as , is the sequence where .

• Given an initial set , the reachable set at time , denoted as
 where .

x D ⊆ ℝn

x+ = f(x)

ξ(x0) x0, x1, … xi+1 = f(xi)

Θ k
Θk = { ξ(x0, k) | x0 ∈ Θ} ξ(x0, k) = xk

Parallelotope Bundles

• A parallelotope is a set of states in denoted as where and
, and such that:

• is called the direction matrix where denotes the row of . The vector is
called the offset vector where is the element of the vector.

• A parallelotope bundle is a set of parallelotopes where .
Note that any polytope initial set can be expressed as a parallelotope bundle.

P ℝn ⟨Λ, c⟩ Λ ∈ ℝ2n×n

c ∈ ℝ2n Λi+n = − Λi i ∈ {1,…, n}

Λ Λi ith Λ c
ci ith

Q {P1, …, Pm} Q = ∩m
i=1 Pi

x ∈ P if and only if Λx ≤ c .

Parallelotope Bundles

Figure 1 from Dreossi et. al:
Parallelotope Bundles for

Polynomial Reachability (2016)

Bernstein Polynomials

• Given two multi-indices and of size , where , the Bernstein polynomial of
degree and index is

• Any polynomial function can be expressed in the Bernstein basis.

i d n i ≤ d
d i

ℬi,d = βi1,d1
(x1)βi2,d2

(x2)…βin,dn
(xn)

βim,dm
(xm) = (dm

im) ximm (1 − xm)dm−im

Bernstein Polynomials

• The corresponding Bernstein Coefficients can be explicitly calculated for multi-
index and polynomial degree :

• The upper and lower bounds of polynomial over unit box are
bounded by the Bernstein coefficients:

i d

h(x1, …, xn) [0,1]n

mini∈I{bi} ≤ infx∈[0,1]nh(x) ≤ supx∈[0,1]nh(x) ≤ maxi∈I{bi} .

bi,d = ∑
j≤i

∏
r

(ir
jr)

(dr

jr)
aj

Reachable Set Comp.

• A parallelotope can also be represented as an affine transformation from
to .  

• Therefore, upper bounds on the supremum of a function over is equivalent to
upper bound of over .

• We denote the procedures for calculating such upper and lower bounds for a
polynomial over some parallelotope as and

 respectively.

P Tp [0,1]n

P

h P
h ∘ Tp [0,1]n

h P 𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(h, P)
𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(h, P)

Reachable Set Comp.
• Given parallelotope bundle and a discrete dynamical system ,

we wish to compute an over-approximation of the image as a new bundle
.

• We ensure that direction matrix of is same as and the computation is required only
to compute the offsets of the directions according to the following non-linear optimization
problems:

• Here, is the offset of parallelotope . Similarly, is the row of the directions
matrix for .

Q = {P1, P2, …, Pm} x+ = f(x)
f(Q)

Q′￼ = {P′￼1, P′￼2, …, P′￼m}

Λ_,i P′￼i Pi

cj,i jth Pi Λj,i jth

Pi

cj,i = max
x∈Pi

Λj,i ⋅ f(x)

cj+n,i = max
x∈Pi

− Λj,i ⋅ f(x)

Reachable Set Comp.

• We can invoke and to update the
offsets according to the solutions found over all parallelotopes in the bundle

:

• We iterate this over a certain number of time steps to produce the reachable set.

𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(h, P) 𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(h, P)

Q = {P1, P2, …, Pm}

cj,i = minm
l=1{𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖴𝗉𝗉𝖾𝗋(Λj,i ⋅ f(x), Pl)} if j ≤ n .

cj+n,i = maxm
l=1{𝖡𝖾𝗋𝗇𝗌𝗍𝖾𝗂𝗇𝖫𝗈𝗐𝖾𝗋(Λj,i ⋅ f(x), Pl)} otherwise.

Sapo Drawbacks
• First published in: Dreossi, T. : Sapo: Reachability computation and parameter synthesis of

polynomial dynamical systems (2017).

• Current implementation is verbose. The main core of algorithm takes over a thousand lines of C++
code.

• It does not have native plotting functionality. Sapo generates MATLAB code which must be
separately run through either MATLAB or Octave. Simultaneous visualization is clunky at best.

• Suffers from little to no documentation. The curious reader must delve into previously published
papers to find an explanation of the inner workings.

• Consequently, it becomes difficult to accommodate experimentation.

 Motivations for Kaa

• Python is known for its powerful, well-tested symbolic and matrix-computation libraries.

• Numpy libraries are popular matrix-computation libraries which allow higher-level
manipulation of matrices. This gives us an avenue of overcoming the verbosity and the
possibility of memory leaks inherent in implementing identical features in C++.

• The library of Sympy has powerful symbolic manipulation tools which allow us to
comfortably perform many sensitive symbolic subsititutions into polynomials.

• Matplotlib library has intuitive plotting facilities that we integrate into our tool for visualizing
the reachable set. In particular, Matplotlib facilitates the ability to visualize several reachable
sets simultaneously.

Accessibility

• We offer a Juypter Notebook to rapidly introduce the interested reader to the techniques and
tools we offer through Kaa.

• Juypter notebooks are simple to create and well-known for their straightforward user
interface.

• By leveraging the Matplotlib library for visualizing the reachable set, we were able to design
an engaging interactive tutorial and experimentation platform for visualizing reachable sets of
non-linear systems.

• We document the code extensively and offer resources for learning the internals of Kaa.

Results: SIR Model
• The SIR epidemic model is a 3-dimensional dynamical system governed by the following

dynamics:

Upper and
lower offsets
for variable I

β = 0.34, γ = 0.05

Δ = 0.5

Results: SIR Model
Kaa Sapo

Results: SIR Model
Kaa Sapo

Results: Rossler Model
• The Rossler model is another 3-dimensional system governed under the dynamics:
•

Upper and
lower offsets
for variable y

a = 0.1, b = 0.1, c = 14
Δ = 0.025

Results: Rossler Model
Kaa Sapo

Results: Rossler Model
Kaa Sapo

Results: Quadcopter Model
Kaa Sapo

Performance Drawbacks

• While the current implementation in Python is very intuitive and concise, it incurs severe performance
penalties. We believe this is due to some extraneous library calls in the core loop of the reachable set
computation.

• An immediate next step is to deploy extensive profiling to find performance bottlenecks and subsequently
improve on them.

Conclusions
• We present Kaa, a Python implementation of reachable set computation of nonlinear systems

which is focused towards accessibility and pedagogical use.

• We include Juypter Notebooks and documentation through: https://github.com/Tarheel-
Formal-Methods/kaa

• While we do incur performance drawbacks from selecting Python for implementing this
algorithm, we believe that it aids in fast prototyping and enables students to easily build on
top of the library.

• Immediate future work includes improving on the running time and creating a more
streamlined format for defining models and visualizing reachable sets.

https://github.com/Tarheel-Formal-Methods/kaa
https://github.com/Tarheel-Formal-Methods/kaa

References
• Dreossi, T.: Sapo: Reachability computation and parameter synthesis of polynomial

dynamical systems. In: Proceedings of the 20th International Conference on Hybrid Systems:
Computationand Control. pp. 29–34 (2017)

• Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reachability. In: Pro-
ceedings of the 19th International Conference on Hybrid Systems: Computation and Control.
pp.297–306 (2016)

