
Automatic Dynamic Parallelotope
Bundles for Reachability Analysis of

Nonlinear Systems
19th International Conference on Formal Modeling and

Analysis of Timed Systems

Edward Kim1

Stanley Bak2

Parasara Sridhar Duggirala1

1University of North Carolina at Chapel Hill
2Stony Brook University



Outline

1 Overview of Background

2 Our Contributions

3 Presentation of Algorithm

4 Results on Benchmarks

5 Concluding Remarks



Background: Reachability
Computation

1 Reachable set computation is an
instrumental tool in performing
safety analysis over dynamical
systems.

2 These computations involve
taking an initial set of states
and propagating them for a set
amount of time to understand
the possible states the initial
states could reach within the
alloted time.

3 Techniques for good
over-approximation of reachable
sets over classes of non-linear
systems are topics of active
research.

Figure: Plot of Inverted Pendulum
System under Initial Conditions
x ∈ [0.25, 0.3], y ∈ [0.25, 0.3]



Background: Reachability
Computation

1 The state of a system, denoted as x, lies in a domain
D ⊆ Rn. A discrete-time nonlinear system is denoted as

x+ = f(x) (1)

where f : Rn → Rn is a nonlinear function.

2 The trajectory of a system that evolves according to f ,
denoted as ξ(x0) is a sequence x0, x1, . . . where
xi+1 = f(xi).

3 The kth element in this sequence xk is denoted as ξ(x0, k).



Background: Reachability
Computation

1 Given an initial set Θ ⊆ Rn, the reachable set at step k,
denoted as Θk is defined as

Θk = {ξ(x, k) | x ∈ Θ}

2 Setting number of steps n and Θ0 = Θ, the total reachable
set for n steps can be defined as

R =

n⋃
k=0

{ξ(x, k) | x ∈ Θ}



Background: Reachability with
Template Polyhedra

1 One of many techniques in computing the
overapproximation of the reachable sets for discrete
non-linear systems is to use template polyhedra to
bound the reachable set.

2 Study of template polyhedra find motivations in the static
analysis of programs

3 We are particularly interested in parallelotopes as our
template polyhedra.



Background: Reachability with
Template Polyhedra

Definition
For Rn, a template polyhedron is expressed a tuple 〈H,d〉 where
H is an m× n real-valued matrix and d ∈ Rn is a real-valued
vector. The polyhedron is defined by the conjunction of linear
inequalities

m∧
i=1

Hi · x ≤ di

where Hi is the ith row of template matrix H and
x = (x1, · · · , xm)



Background: Parallelotope Intuition

Figure: Example Initial Parallelotope with offset distance of 4 for all
template directions



Background: Parallelotope Matrices

Figure: Example Initial Parallelotope with template matrix and offset
vectors.



Background: Parallelotope Intuition

Figure: Example Initial Parallelotope rotated 45 degrees clockwise



Background: Parallelotope Matrices

Figure: Example Rotated Parallelotope with template matrix and
offset vectors.



Background: Parallelotopes

Definition
A parallelotope in Rn is represented as a tuple 〈T , cl, cu〉 where
T ∈ Rn×n are called template directions and cl, cu ∈ Rn such
that ∀1≤i≤n cl[i] ≤ cu[i] are called bounds. The half-space
representation defines the set of states

P = { x ∈ Rn | cl[i] ≤ Tix ≤ cu[i], 1 ≤ i ≤ n}.

The rows Ti are called template directions in the
parallelotope.

Parallelotopes can be thought of cases of template
polyhedra where each template direction Ti has its negative
−Ti also included.



Background: Parallelotope Bundles

Definition
A parallelotope bundle Q is a set of parallelotopes {P1, . . . , Pm}.
The set of states represented by a parallelotope bundle is given
as the intersection

Q =

m⋂
i=1

Pi

We can think of the bundle’s template matrix T Q as the
conjunction of all the template directions T Pi

j for the

Pi = 〈T Pi , cPi
l , c

Pi
u 〉

Takeaway: Any convex initial set can be expressed as a
parallelotope bundle.



Background: Convex sets can be
expressed as Parallelotope Bundles

Figure: Figure 1 from Dreossi et. al: Parallelotope Bundles for
Polynomial Reachability (2016)



Background: Non-linear Optimization

1 Consider a parallelotopes P in the bundle Q and a
non-linear function f : Rn → Rn. We want to be able to
bound the image f(P ) using the template directions
defining the parallelotopes in our bundle Q.

2 This amounts to finding new upper and lower bound
vectors c′u, c

′
l ∈ Rn respectively such that

c′l[i] ≤ T
Q
i · f(x) ≤ c′u[i], x ∈ P

for 1 ≤ i ≤ n



Background: Non-linear Optimization

1 The bounds can be formulated as non-linear optimization
problems:

c′u[i] = max
x∈Q
T Qi · f(x)

c′l[i] = min
x∈Q
T Qi · f(x)

2 The reachable set computation is done by iterating this
optimization problem to overapproximate the images of the
bundles in each step of the computation.



Background: Non-linear Optimization

Figure: Toy example of the transformation of a bundle containing two
parallelotopes



Background: Algorithm

Input: Dynamics f , Initial Parallelotope bundle Q0, Step Bound S, indexes
for parallelotopes I

Output: Reachable Set Overapproximation Θk for each step k

for k ∈ [1, 2, . . . , S] do

Qk = TransformBundle (f , Qk−1, T Qk−1 )

Θk = Qk

end

return Θ1 . . .ΘS

Proc TransformBundle(f , Q, T ):
Q′ ← {}; cu ← +∞; cl ← −∞
for each parallelotope P in Q do

for each template direction Ti in the template directions T do
c′u[i]← min{Ti · f, c′u[i]}
c′l[i]← max{−1× Ti · f, c′l[i]}

end

end
Construct parallelotopes P ′1, . . . , P

′
k from T , c′l, c

′
u and indexes from I

Q′ ← {P ′1, . . . , P ′k}
return Q′



Background: Bernstein Expansion

1 Previous work focused on reachabilty under discrete
non-linear polynomial dynamics i.e the non-linear function
f : Rn → Rn is polynomial.

2 Our optimization problems become one of optimizing over
polynomial Ti · f(x) which is generally a costly operation.

3 The insight comes from leveraging Bernstein polynomials.
These polynomials yield an efficient manner of bounding
the solution to the aforementioned polynomial optimization
problems.

4 An extra linear transformation taking the unit-box domain
[0, 1]n to the parallelotope P is required to use Bernstein
polynomials.



Background: Drawbacks

1 Hitherto only static parallelotopes
have been considered. In other
words, the template directions
specifying the parallelotopes are to
be given as user input at the
beginning of the reachable set
computation.

2 The template directions chosen are
generally the axis-aligned, diagonal
directions. However, it’s not clear
that these directions necessary
yield good overapproximations.

3 Since the template directions are
set at the beginning, they cannot
adapt to the behavior of the
dynamics. This could yield
overapproximations which are too
conservative for any practical use.

Figure: The effect of choosing
inappropriate template directions
for the Coupled VanDerPol
system.



Contributions

1 We present a method which is both dynamic and
automatic. Our method utilizes the Principal Component
Analysis (PCA) and Local Linear Approximations.

2 We extend our tool Kaa to leverage NASA’s Kodiak to
perform the optimization procedure.

3 We parallelize our implementation to scale with an
increasing number of parallelotopes in our bundles.



Contributions: Automatic, Dynamic
Algorithm

1 We choose template directions at each step by two
procdure working in tandem

2 One procedure generates new template directions via
Principal Component Analysis (PCA) and the other
generates template directions through Local Linear
Approximations.

3 Each procedure adds one parallelotope to the bundle with
a set template lifespan. This lifespan dictates the future
number of steps the parallelotope and its template
directions will exist in the bundle.



Contributions: PCA Directions

1 To generate the PCA directions from bundle Q, we first
calculate the support points of all template directions in T Qi
over the bundle Q.

pui = max
x∈Q

TQi · x, p`i = min
x∈Q

TQi · x

2 We then propagate these support points to the next step by
the given dynamics f . This will gives us set of trajectories.



Contributions: PCA Directions

1 We perform PCA on the endpoints of these trajectories to
yield a real-valued n× n matrix whose rows are the PCA
directions. These rows are used as template directions to
define a single parallelotope P ′.

2 The parallelotope P ′ with template lifespan TP ′ is added to
the bundle Q to give another bundle Q′ = Q ∪ P ′.



Contributions: Linear Approx.
Directions

1 Observe that the if the dynamics f were linear i.e x+ = Ax
for some linear transformation A, then the image of the
parallelotope cl ≤ T x ≤ cu, will be the set
cl ≤ T ·A−1x ≤ cu.

2 Since the initial parallelotope will be defined by the
axis-aligned directions (T = In), the image after the first
step will be given by

cl ≤ A−1x ≤ cu

Similarly, after the exact image of the initial parallelotope
after two steps will problems:

cl ≤ (A−1)2x ≤ cu



Contributions: Linear Approx.
Directions

1 Begin computation with Tlin = In

2 To generate the Linear Approximation templates, we once
again calculate the support points of all template
directions, T Qi , over the bundle Q.

3 Propagate the support points using given dynamics f to
the next step. This gives us a set of trajectories S.



Contributions: Linear Approx.
Directions

1 Calculate the best-fit linear approximation A using the
start and endpoints of the trajectories. Note that A will be
a real-valued n× n matrix.

2 Multiply the template directions Tlin by A−1 to yield
Tlin · A−1.

3 Define a parallelotope P ′ with template lifespan TP ′ and
add it to bundle Q to get Q′ = Q ∪ P ′.

4 Tlin ← Tlin · A−1



Contributions: Template Lifespan

1 The template lifespan parameter dictates the number of
steps after its creation the parallelotope’s template
directions exist in the bundle.

2 The intuition is that certain dynamics may be more
amenable to directions generated previously in the
reachable set computation.

3 Having a lifespan allows the algorithm to be adaptive while
attenuating the computational cost of optimizing over a
large number of parallelotopes.

4 This is a tunable parameter we vary in our experiments.



Contributions: Template Lifespan

Figure: Instance of the template directions of parallelotope P having
a template lifespan of two.



Contributions: Dynamic Algorithm

Input: Dynamics f , Initial Parallelotope P0, Step Bound S
Output: Reachable Set Overapproximation Θk at each step k
Q0 = {P0}
T = I // Init Template Directions

for k ∈ [1, 2, . . . , S] do
Psupp = GetSupportPoints (Qk−1) (support points of Qk−1)
Pprop = PropagatePointsOneStep (Psupp, f) (image of support points)
A = ApproxLinearTrans (Psupp, Pprop)

T = T ·A−1

T lin
k = {T1, . . . , Tn}
T pca
k = {PCA(Pprop)}
Tk = T lin

k ∪ T pca
k

/* For lifespan L > 0, instead call TransformBundle with

Tk ∪ Tk−1 ∪ . . . ∪ Tk−L */

Qk = TransformBundle (f , Qk−1, Tk)

Θk ← Qk

end

return Θ1 . . .ΘS



Contributions: Kaa

1 Kaa is written in Python and relies on the numpy library
for matrix computations, sympy library for all symbolic
subsitution, and scipy, matplotlib for plotting the reachable
sets and computing the volume for lower-dimensional
systems.

2 The optimization procedure for finding the upper and lower
bounds of template directions is performed through the
Kodiak library. Finally, parallelization of the offset
calculation procedures is implemented through the
multiprocessing module.

3 Kodiak allows for more general dynamics beyond the
polynomial ones considered in a previous tool, Sapo



Results: Benchmarks

1 For benchmarking, we select six non-linear models with
polynomial dynamics.

2 Many of these models are also implemented in Sapo which
explored reachability with static parallelotope bundles. In
these cases, we directly compare the performance of our
dynamic strategies with the Sapo’s static parallelotopes
defined by diagonal directions.

3 To provide meaningful comparisions, we set the number of
dynamic parallelotopes to be equal to the number of static
ones excluding the initial box.



Results: Benchmarks

Model Dimension Parameters # steps ∆
Vanderpol 2 - 70 steps 0.08
Jet Engine 2 - 100 steps 0.2
Neuron 2 - 200 steps 0.2
SIR 3 β = 0.05

γ = 0.34
150 steps 0.1

Coupled
Vanderpol

4 - 40 steps 0.08

COVID 7 β = 0.05
γ = 0.0
η = 0.02

200 steps 0.08

Table: Benchmark models and truncated information



Results: COVID Supermodel
A modified SIR model accounting for the possibility of asymptomatic
patients. Given by the following discretized seven-dimensional
dynamics:

S′
A = SA − (βSA(A+ I)) ·∆
S′
I = SI − (βSI(A+ I)) ·∆
A′ = A+ (βSI(A+ I)− γI) ·∆
I ′ = I + (βSI(A+ I)− γI) ·∆
R′

A = RA + (γA) ·∆
R′

I = RI + (γI) ·∆
D′ = D + (ηI) ·∆

where the variables denote the fraction of a population of individuals
designated as Susceptible to Asymptomatic (SA), Susceptible to
Symptomatic (SI), Asymptomatic (A), Symptomatic (I), Removed
from Asymptomatic (RA), Removed from Symptomatic (RI), and
Deceased (D).



Results: COVID Supermodel

Figure: Plot of COVID Supermodel reachable set against real-world
Indian COVID data.



Results: Comparision against Static
Parallelotopes

1 For models previously defined in
Sapo, we set the static
parallelotopes to be exactly
those found in Sapo.

2 If a model is not implemented in
Sapo, we simply use the static
parallelotopes defined in a
model of equal dimension.

3 To address the unavailability of
a four dimensional model
implemented in Sapo, we
sampled random subsets of five
static parallelotopes defined
with diagonal directions and
chose the flowpipe with smallest
volume.



Results: Performance under Increasing
Initial Sets

1 We vary the initial box
dimensions to gradually increase
the box’s volume, then plot the
total flowpipe volumes after
running the benchmark on the
static strategies and
best-performing dynamic
strategies.

2 Our dynamic strategies perform
better than static ones in
controlling the total flowpipe
volume as the initial set
becomes larger.

3 The performance of static
parallelotopes tends to degrade
rapidly as we increase the
volume of the initial box



Results: Performance against Random
Static Bundles

1 We compare our dynamic
strategies against static random
parallelotope bundles under
initial sets with increasing
volume.

2 We sample such parallelotopes
in n dimensions by first
sampling a set of n directions
uniformly on the surface of the
unit (n− 1)-sphere, then
defining our parallelotope using
these sampled directions

3 We sample twenty of these
parallelotopes for each trial,
average the total flowpipe
volumes, then plot this against
the best-performing dynamic
strategy.



Results: No Universal Ratio

1 There seems to be no universal
optimal ratio between the
number of dynamic
parallelotopes defined by PCA
and Linear Approximation
directions which perform well on
all benchmarks.

2 In the Vanderpol model, using
parallelotopes defined by Linear
Approximation directions is
more effective than those
defined by PCA directions.

3 Neuron model shows the
opposite trend where using
parallelotopes defined by PCA
directions is more effective than
using those defined by Linear
Approximation directions.



Future Directions

1 Are there other adaptive methods we can utilize to
generate template directions dynamically?

2 What about more sophisticated linear approximation
methods through Koopman linearization techniques?

3 The use of massively parallelized reachability techniques
through HPC hardware is applicable here. Specifcally, can
we leverage GPUs to parallelize the optimization procedure
for larger parallelotope bundles?

4 Why do PCA directions perform better than Linear
Approximation directions on certain systems?



Concluding Remarks

1 We investigated two techniques for generating templates
dynamically: first using linear approximation of the
dynamics, and second using PCA.

2 We also observed that both these techniques improve the
accuracy of the reachable sets for different benchmarks.

3 We extend Kaa with Kodiak to handle more general
dynamics. Systems with more general dynamics are
considered in the extended version on arXiv.



Relevant Links

Github Repository for Kaa:
https://github.com/Tarheel-Formal-Methods/kaa-dynamic

Github Repository for Kodiak:
https://github.com/nasa/Kodiak

COVID Modeling Blog Post:
https://sigbed.org/2021/06/21/sidbed-blog-covid-formal-
verification/


