Automatic Dynamic Parallelotope
Bundles for Reachability Analysis of
Nonlinear Systems

19th International Conference on Formal Modeling and
Analysis of Timed Systems

Edward Kim!
Stanley Bak?
Parasara Sridhar Duggirala'

1University of North Carolina at Chapel Hill
2Stony Brook University

Outline

Overview of Background
Our Contributions
Presentation of Algorithm
Results on Benchmarks

Concluding Remarks

Background: Reachability

Reachable set computation is an
instrumental tool in performing
safety analysis over dynamical
systems.

These computations involve
taking an initial set of states
and propagating them for a set
amount of time to understand
the possible states the initial
states could reach within the
alloted time.

Techniques for good
over-approximation of reachable
sets over classes of non-linear
systems are topics of active
research.

Computation

Projection of Phase Plot for InvertPend Variables: (x, y)

Figure: Plot of Inverted Pendulum

System under Initial Conditions
z € [0.25,0.3],y € [0.25,0.3]

= nvertPend

Background: Reachability
Computation

The state of a system, denoted as z, lies in a domain
D CR"™. A discrete-time nonlinear system is denoted as

ot = f(z) (1)

where f : R®™ — R"” is a nonlinear function.

The trajectory of a system that evolves according to f,
denoted as £(xg) is a sequence xg, x1, ... where
Tiy1 = f (ﬂfz)

The k' element in this sequence zy, is denoted as &(zq, k).

Background: Reachability
Computation

Given an initial set ©® C R", the reachable set at step k,
denoted as Oy, is defined as

Or = {&(x, k) |z € B}

Setting number of steps n and ©g = ©, the total reachable
set for n steps can be defined as

R = [J{e, b |z € ©)

k=0

Background: Reachability with
Template Polyhedra

One of many techniques in computing the
overapproximation of the reachable sets for discrete
non-linear systems is to use template polyhedra to
bound the reachable set.

Study of template polyhedra find motivations in the static
analysis of programs

We are particularly interested in parallelotopes as our
template polyhedra.

Background: Reachability with
Template Polyhedra

Definition

For R™, a template polyhedron is expressed a tuple (H,d) where
H is an m x n real-valued matrix and d € R” is a real-valued
vector. The polyhedron is defined by the conjunction of linear
inequalities

m

i=1
where H; is the i*" row of template matrix H and
X = (xla"' axm)

Background: Parallelotope Intuition

]
ALY
y=4
[%] Co]
Z N,
A 2 3
\M
y [l

Figure: Example Initial Parallelotope with offset distance of 4 for all
template directions

Background: Parallelotope Matrices

y
L5

y=4

[s) Ce]
Z .

Figure: Example Initial Parallelotope with template matrix and offset
vectors.

Background: Parallelotope Intuition

¥
GO
b
L]
[7 -4

Figure: Example Initial Parallelotope rotated 45 degrees clockwise

Background: Parallelotope Matrices

[7]

L]

1:—L1TT f : ’1,]

_ 2
Cr7|en

Figure: Example Rotated Parallelotope with template matrix and

offset vectors.

Background: Parallelotopes

Definition

A parallelotope in R™ is represented as a tuple (7T, ¢, ¢,,) where
T € R™" are called template directions and ¢, ¢, € R™ such
that Vi<i<n ¢[i] < ¢ [i] are called bounds. The half-space
representation defines the set of states

P={zeR"|qli] <Tix <¢,li], 1 <i<n}.

m The rows 7; are called template directions in the
parallelotope.

m Parallelotopes can be thought of cases of template
polyhedra where each template direction 7; has its negative
—7; also included.

Background: Parallelotope Bundles

Definition

A parallelotope bundle @) is a set of parallelotopes {Pi, ..., Py}.
The set of states represented by a parallelotope bundle is given
as the intersection

m We can think of the bundle’s template matrix 7€ as the
conjunction of all the template directions 7;-P ‘ for the
= (TP, ¢, el
L Takeaway. Any convex initial set can be expressed as a
parallelotope bundle.

Background: Convex sets can be
expressed as Parallelotope Bundles

Figure: Figure 1 from Dreossi et. al: Parallelotope Bundles for
Polynomial Reachability (2016)

Background: Non-linear Optimization

Consider a parallelotopes P in the bundle) and a
non-linear function f : R™ — R”. We want to be able to
bound the image f(P) using the template directions
defining the parallelotopes in our bundle Q.

This amounts to finding new upper and lower bound
vectors ¢, ¢; € R" respectively such that

i) < TP f@) <dfil, we P

for1 <i<n

Background: Non-linear Optimization

The bounds can be formulated as non-linear optimization
problems:

uli] = max T - f(x)

cili) = min T2 - ()

The reachable set computation is done by iterating this
optimization problem to overapproximate the images of the
bundles in each step of the computation.

Background: Non-linear Optimization

Figure: Toy example of the transformation of a bundle containing two
parallelotopes

Background: Algorithm

Input: Dynamics f, Initial Parallelotope bundle Qg, Step Bound S, indexes
for parallelotopes I .
Output: Reachable Set Overapproximation © for each step k

for k € [1,2,...,5] do
Qp = TransformBundle (f, Qj_1, T@r-1)
Or = Qk

end

return ©7...0g

Proc TransformBundle(f, Q, 7):
Q'+ {}; cu & +00; ¢ + —0
for each parallelotope P in Q do
for each template direction T; in the template directions T do
ey [i] = min{T; - f, c, [i]}
cj[i] <= max{—1 x T - f,¢[i]}
end
end
Construct parallelotopes P, ..., P} from T,c],c;, and indexes from I
Q —{P,.... B}
return Q'

Background: Bernstein Expansion

Previous work focused on reachabilty under discrete
non-linear polynomial dynamics i.e the non-linear function
f:R®™ —» R™ is polynomial.

Our optimization problems become one of optimizing over
polynomial 7; - f(x) which is generally a costly operation.

The insight comes from leveraging Bernstein polynomials.
These polynomials yield an efficient manner of bounding
the solution to the aforementioned polynomial optimization
problems.

An extra linear transformation taking the unit-box domain
[0,1]™ to the parallelotope P is required to use Bernstein
polynomials.

Background: Drawbacks

Hitherto only static parallelotopes
have been considered. In other
words, the template directions
specifying the parallelotopes are to
be given as user input at the
beginning of the reachable set
computation.

The template directions chosen are
generally the axis-aligned, diagonal
directions. However, it’s not clear
that these directions necessary
yield good overapproximations.

Since the template directions are
set at the beginning, they cannot
adapt to the behavior of the
dynamics. This could yield
overapproximations which are too
conservative for any practical use.

Projection of Phase Plot for CoupledVDP Variables: (x1, y1)
- CvOP mu=1

Figure: The effect of choosing
inappropriate template directions
for the Coupled VanDerPol
system.

Contributions

We present a method which is both dynamic and
automatic. Our method utilizes the Principal Component
Analysis (PCA) and Local Linear Approximations.

We extend our tool Kaa to leverage NASA’s Kodiak to
perform the optimization procedure.

We parallelize our implementation to scale with an
increasing number of parallelotopes in our bundles.

Contributions: Automatic, Dynamic
Algorithm

We choose template directions at each step by two
procdure working in tandem

One procedure generates new template directions via
Principal Component Analysis (PCA) and the other
generates template directions through Local Linear
Approximations.

Each procedure adds one parallelotope to the bundle with
a set template lifespan. This lifespan dictates the future
number of steps the parallelotope and its template
directions will exist in the bundle.

Contributions: PCA Directions

To generate the PCA directions from bundle @), we first
calculate the support points of all template directions in 7,
over the bundle Q).

_ Q 0 @
pi =maxTi -z, py=minT-a

We then propagate these support points to the next step by
the given dynamics f. This will gives us set of trajectories.

Contributions: PCA Directions

We perform PCA on the endpoints of these trajectories to
yield a real-valued n x n matrix whose rows are the PCA
directions. These rows are used as template directions to
define a single parallelotope P’.

The parallelotope P’ with template lifespan Tp: is added to
the bundle Q to give another bundle Q' = Q U P'.

Contributions: Linear Approx.
Directions

Observe that the if the dynamics f were linear i.e 27 = Ax
for some linear transformation A, then the image of the
parallelotope ¢; < Tz < ¢, will be the set
aq<T Az <ec,.

Since the initial parallelotope will be defined by the
axis-aligned directions (7 = I,,), the image after the first
step will be given by

q<A 'z <e,

Similarly, after the exact image of the initial parallelotope
after two steps will problems:

a< (A Y2z <e,

Contributions: Linear Approx.
Directions

Begin computation with 7y, = I,

To generate the Linear Approximation templates, we once
again calculate the support points of all template
directions, 7;Q, over the bundle Q).

Propagate the support points using given dynamics f to
the next step. This gives us a set of trajectories S.

Contributions: Linear Approx.
Directions

Calculate the best-fit linear approximation A using the
start and endpoints of the trajectories. Note that A will be
a real-valued n x n matrix.

Multiply the template directions 7, by A~! to yield
771'71 . A_l-

Define a parallelotope P’ with template lifespan Tps and
add it to bundle Q to get Q' = Q U P'.

ﬁin — ﬁzn : A_l

Contributions: Template Lifespan

The template lifespan parameter dictates the number of
steps after its creation the parallelotope’s template
directions exist in the bundle.

=

The intuition is that certain dynamics may be more
amenable to directions generated previously in the
reachable set computation.

Having a lifespan allows the algorithm to be adaptive while
attenuating the computational cost of optimizing over a
large number of parallelotopes.

This is a tunable parameter we vary in our experiments.

Contributions: Template Lifespan

Figure: Instance of the template directions of parallelotope P having
a template lifespan of two.

Contributions: Dynamic Algorithm

Input: Dynamics f, Initial Parallelotope Py, Step Bound S
Output: Reachable Set Overapproximation ©y at each step k

Qo ={Fo}

T =

I // Init Template Directions

for k€ [1,2,...,5] do

end

Psypp = GetSupportPoints (Qr_1) (support points of Qx_1)

Pprop = PropagatePointsOneStep (Psupp, f) (image of support points)
A = ApproxLinearTrans (Psupp, Pprop)

T=T A1

Tliljn = {7—1777;1}

Tk @ = {PCA(PWOP)}

77@ — 72in U 7’]€PC3«

/* For lifespan L > 0, instead call TransformBundle with

TeUTe—1U...UT_ */
Qr = TransformBundle (f, Qr_1,7T%)
O + Qk

return @1 .. .@5

Contributions: Kaa

Kaa is written in Python and relies on the numpy library
for matrix computations, sympy library for all symbolic
subsitution, and scipy, matplotlib for plotting the reachable
sets and computing the volume for lower-dimensional
systems.

The optimization procedure for finding the upper and lower
bounds of template directions is performed through the
Kodiak library. Finally, parallelization of the offset
calculation procedures is implemented through the
multiprocessing module.

Kodiak allows for more general dynamics beyond the
polynomial ones considered in a previous tool, Sapo

Results: Benchmarks

For benchmarking, we select six non-linear models with
polynomial dynamics.

Many of these models are also implemented in Sapo which
explored reachability with static parallelotope bundles. In
these cases, we directly compare the performance of our
dynamic strategies with the Sapo’s static parallelotopes
defined by diagonal directions.

To provide meaningful comparisions, we set the number of
dynamic parallelotopes to be equal to the number of static
ones excluding the initial box.

Results: Benchmarks

Model Dimension | Parameters # steps A
Vanderpol 2 - 70 steps 0.08
Jet Engine 2 - 100 steps 0.2
Neuron 2 - 200 steps 0.2
SIR 3 B =0.05 150 steps 0.1
v =0.34
Coupled 4 - 40 steps 0.08
Vanderpol
COVID 7 B =0.05 200 steps | 0.08
v=0.0
n = 0.02

Table: Benchmark models and truncated information

Results: COVID Supermodel

A modified SIR model accounting for the possibility of asymptomatic
patients. Given by the following discretized seven-dimensional
dynamics:

Sy =854—(BSa(A+1))-A
Sy =581—(BSiI(A+1))-A
A=A+ (BSI(A+1)—~I)-A
I'=T+(BS[(A+1I)—~I)-A
Ry =Ras+ (vA)-A
Ri=Rr+(I)-A

D'=D+ (nI)-A

where the variables denote the fraction of a population of individuals
designated as Susceptible to Asymptomatic (S4), Susceptible to
Symptomatic (Sy), Asymptomatic (A), Symptomatic (I), Removed
from Asymptomatic (R4), Removed from Symptomatic (Ry), and
Deceased (D).

Results: COVID Supermodel

1e7 Projection for Confirmed Against Real-World India Data for 08/22/20-10/01/20
B =0.1,y=0.087
=0.105,y = 0.087
1o g =0.11,y = 0.087
: B =0.115,y = 0.087
o —— Real Data
2 Predicted Region
£o8
o
]
<
S
So6
]
2
&
0.4

08/22/20 ~ 08/27/20 ~ 09/01/20 ~ 09/06/20 ~ 09/11/20 ~ 09/16/20 09/21/20 ~ 09/26/20 ~ 10/01/20
Dates

Figure: Plot of COVID Supermodel reachable set against real-world
Indian COVID data.

Results: Comparision against Static
Parallelotopes

For models previously defined in
Sapo, we set the static
parallelotopes to be exactly
those found in Sapo.

If a model is not implemented in
Sapo, we simply use the static
parallelotopes defined in a
model of equal dimension.

To address the unavailability of
a four dimensional model
implemented in Sapo, we
sampled random subsets of five
static parallelotopes defined
with diagonal directions and
chose the flowpipe with smallest
volume.

Strategy Total Volume Strategy Total Volume
5LinApp 0227911 5 LinApp 58199.62
1PCA, 4LinApp | 0225917 1PCA, 4 LinApp 31486.16
2PCA,3LinApp | 0.195573 2PCA, 3 LinApp 5204.09
3PCA,2LinApp | 0.188873 3PCA, 2 LinApp 668176
4PCA,1LinApp | 1227753 4PCA, 1LinApp 50505.10
5PCA 1.509897 5PCA 84191.15
5 Static Diagonal(Sapo)| 2.863307 5 Static Diagonal (Sapo)| 66182.18
(a) Vanderpol (b) Jet Engine.
Strategy Total Volume|
5LinApp 154.078
Strategy Total Volume
1PCA, 4 LinApp 136.089
2 LinApp 0.001423
2PCA, 3 LinApp 73420
1PCA,1LinApp | 0.106546
3PCA,2LinApp 73126
2PCA 0117347
4PCA, 1LinApp 76.33
2 Static Diagonal (Sapo)| 0.020894
5PCA 83.896
T, (d)SIR
5 Static Diagonal (Sapo)| 202.406
(¢) FitzHugh-Nagumo
Strategy Total Volume|
5LinApp 55171 Strategy Total Volume
1PCA, 4 LinApp 5.2536 3 LinApp 2.95582227 + 10"
2PCA, 3 LinApp 5.6670 1PCA,2LinApp [2.33007583+ 10"
3PCA, 2 LinApp 5.5824 2PCA,1LinApp |4.02751770 % 10~°
4PCA,1LinApp | 3122108 3PCA 4.02749571 * 10~°
5PCA 388.0513 3 Static Diagonal (Sapo)| 4.02749571 x 10~
5 Static Diagonal (Best)| 3023.4463 (0 covip

() Coupled Vanderpol

Results: Performance under Increasing
Initial Sets

75062 Volume Plot for etEngine

We vary the initial box
dimensions to gradually increase
the box’s volume, then plot the
total flowpipe volumes after

&

30352

Total Volume of Reachable Set
Total Volume of Reachable Set

o176 0193
Volume of it Box

running the benchmark on the (o) Vanderpol ©) et Bngine

o .
o001 oo oten

0013
Volume of il Box

static strategies and
best-performing dynamic
strategies.

9 a2
= o

Our dynamic strategies perform
better than static ones in
controlling the total flowpipe

(<) Neuron (d) SIR
volume as the initial set o e 5 s e
becomes larger. o

Total Volume of Reachable Set

0
noszs 000000 0010

000005
Volume of il Box Volume of il Box

for CoupledVDP Inital Box Volume VS Reachable Set Volume Plt for covid

The performance of static
parallelotopes tends to degrade
rapidly as we increase the
volume of the initial box

Total Volume of Reachable Set

0001163 000275t %0 168 N

0001960
Volume of il Box Volume of it Box

(e) Coupled Vanderpol (HCovID

Results: Performance against Random
Static Bundles

We compare our dynamic
strategies against static random
parallelotope bundles under
initial sets with increasing
volume.

‘We sample such parallelotopes
in n dimensions by first
sampling a set of n directions
uniformly on the surface of the
unit (n — 1)-sphere, then
defining our parallelotope using
these sampled directions

We sample twenty of these
parallelotopes for each trial,
average the total flowpipe
volumes, then plot this against
the best-performing dynamic
strategy.

i

0
o001

B gm0

0013
Volume of il 8ox

() Vanderpol

Inital Box Volure VS Reachable SetVolume Plo for VOP

00028

Intal Box Volume VS Reachable Set olume Po for Neuron
7

95n

186

Total Volume of Reachable Set

u01600

0

0

Total Volume of Reachable Set

0000004

It Box Voume VS Reachable St Volume Plot fo etEngine

01768
Volume o it Box

(b) Jet Engine

lume of Reachable Set

619

o -
0000500

(a0z
Vlume of il 8ox elume o it Box
(c) Neuron (d)SIR
ju
S0
£
#1000 -

0001583
Volume of il Box

(¢) Coupled Vanderpol

000228t

1200
Volume o il Box

() CovID

019%

Inital Box Volume VS Reachable Set olume Po for SR

0000268

covid

2001

Results: No Universal Ratio

There seems to be no universal
optimal ratio between the
number of dynamic : ' —————
parallelotopes defined by PCA -0 i
and Linear Approximation . K :
directions which perform well on A S — e e e e
all benchmarks.

Projection of Phase Plot for VDP Variables: (x, y) Projection of Phase Plot for Neuron Variables: (x, y)

(a) 5Lin (b) 1 PCA5 Lin

Projection of Phase Plot for VDP Variables: (x, y) Projection of Phase Plot for Neur

In the Vanderpol model, using
parallelotopes defined by Linear
Approximation directions is
more effective than those
defined by PCA directions.

Neuron model shows the
opposite trend where using
parallelotopes defined by PCA
directions is more effective than ©Sapo
using those defined by Linear
Approximation directions.

-
!

(d)5PCA1Lin

Projection of Phase Piot for Neur

;

Future Directions

Are there other adaptive methods we can utilize to
generate template directions dynamically?

What about more sophisticated linear approximation
methods through Koopman linearization techniques?

The use of massively parallelized reachability techniques
through HPC hardware is applicable here. Specifcally, can
we leverage GPUs to parallelize the optimization procedure
for larger parallelotope bundles?

Why do PCA directions perform better than Linear
Approximation directions on certain systems?

Concluding Remarks

We investigated two techniques for generating templates
dynamically: first using linear approximation of the
dynamics, and second using PCA.

We also observed that both these techniques improve the
accuracy of the reachable sets for different benchmarks.

We extend Kaa with Kodiak to handle more general
dynamics. Systems with more general dynamics are
considered in the extended version on arXiv.

Relevant Links

m Github Repository for Kaa:
https://github.com/Tarheel-Formal-Methods/kaa-dynamic

m Github Repository for Kodiak:
https://github.com/nasa/Kodiak

m COVID Modeling Blog Post:
https://sighed.org/2021/06/21 /sidbed-blog-covid-formal-
verification/

